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SUPPLEMENTAL MATERIAL 	  
A model of representational spaces in human cortex 	  
Guntupall i ,  Hanke, Halchenko, Connolly,  Ramadge, Haxby 	  
	  
S.1. Methods: Details about MRI scanning protocols and data preprocessing	  
S.1.1. Movie study	  
S.1.1.1. fMRI protocol. Subjects were scanned in a Philips Intera Achieva 3T scanner with an 8 
channel head coil at the Dartmouth Brain Imaging Center. Functional scans were acquired with 
an echo planar imaging sequence (TR=2.5 s, TE=35 ms, flip angle=90°, 80 x 80 matrix, FOV=240 
mm x 240 mm) every 2.5 s with whole brain coverage (41x3 mm thick interleaved axial slices). We 
acquired a total of 2718 functional scans with 1350 TRs in four runs during the first session and 
1368 TRs in four runs during the second session.  T1-weighted anatomical scans were acquired 
at the end of each session (MPRAGE, TR=9.85 s, TE=4.53 s, flip angle=8°, 256 x 256 matrix, 
FOV=240 mm, 160 1 mm thick sagittal slices). The voxel resolution was 0.938 mm x 0.938 mm x 
1.0 mm.	  
S.1.1.2. fMRI data preprocessing. Each subject’s fMRI data were preprocessed using AFNI 
software (Cox, 1996; http://afni.nimh.nih.gov). Functional data were corrected for the order of 
slice acquisition then for head motion by aligning to the last volume of the last functional run. 
Any spikes in the data were removed using 3dDespike in AFNI. Data were then filtered using 
3dBandpass in AFNI to remove any temporal signal variation slower than 0.00667 Hz, faster than 
0.1 Hz, and that correlated with the whole brain average signal or the head movement 
parameters. Residual data were then aligned to the MNI 152 brain template using nearest 
neighbor resampling and spatially smoothed with a 4 mm full-width-at-half-maximum (FWHM) 
Gaussian filter. These were the anatomically-aligned data used for comparison during validation 
analyses. Data acquired during the overlapping movie segments were discarded resulting in a 
total of 2662 TRs with 1326 TRs in the first session and 1336 TRs in the second session. We 
derived a gray matter mask by segmenting the MNI_avg152T1 brain provided in AFNI and 
removing any voxel that was outside the cortical surface by more than twice the thickness of the 
gray matter at each surface node. It included 54,034 3 mm isotropic voxels across both 
hemispheres. We used this mask for all subsequent analyses of all subjects. We implemented 
our methods and ran our analyses in PyMVPA unless otherwise specified (Hanke et al. 2009; 
http://www.pymvpa.org). All preprocessing and analyses were carried out on a 64-bit Debian 7.0 
(wheezy) system with additional software from NeuroDebian (Halchenko and Hanke, 2012; 
http://neuro.debian.net).	  
	  
S.1.2. Animal species perception study	  
S.1.2.1. fMRI protocol. Subjects were scanned in a Philips Intera Achieva 3T scanner with an 8 
channel head coil at the Dartmouth Brain Imaging Center. T1-weighted anatomical scans were 
acquired at the end of each session (MPRAGE, TR=9.85 s, TE=4.53 s, flip angle=8°, 256 x 256 
matrix, FOV=240 mm, 160 1 mm thick sagittal slices). The voxel resolution was 0.938 mm x 0.938 
mm x 1.0 mm. Functional scans were acquired with an echo planar imaging sequence (TR=2 s, 
TE=35 ms, flip angle=90°, 80 x 80 matrix, FOV=240 mm x 240 mm) every 2 s with whole brain 
coverage (42x3 mm thick interleaved axial slices).	  
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fMRI data preprocessing. Each subject’s fMRI data were preprocessed using AFNI software 
(Cox, 1996; http://afni.nimh.nih.gov). Functional data were first corrected for the order of slice 
acquisition and then for head motion by aligning to the last volume of the last functional run. 
Any spikes in the data were removed using 3dDespike in AFNI. Data were then filtered to 
remove any linear and quadratic trends. Residual data were then spatially smoothed with a 4 
mm full-width at half-max Gaussian filter. We estimated the beta values for each condition in 
each run by deconvolving with hemodynamic response function using 3dDeconvolve in AFNI. 
Each run yielded 6 beta values per voxel corresponding to 6 animal species. We then aligned 
these beta maps first to the mean functional image of the corresponding subject’s data from 
the Raiders study and then to the MNI 152 brain template using the alignment parameters 
derived in the raiders study using nearest neighbor resampling. These were the anatomically-
aligned data used for comparison during validation analyses.	  
	  
S.1.3.  Retinotopic mapping	  
S.1.3.1.  Stimuli. Subjects viewed high-contrast black and white checkerboard patterns flickering 
at 8 Hz within symmetrical wedges for polar angle mapping runs and within a ring for 
eccentricity mapping runs.  Each wedge subtended 22.5° at fixation and each ring subtended 
~1° of visual angle in width. During polar angle runs, the symmetrical wedge was presented at a 
given location for 2 s before moving to an adjacent non-overlapping location for the next TR. In 
clockwise runs, the wedge moved to an adjacent clockwise location and in counter-clockwise 
runs, it moved to an adjacent counter-clockwise location. During eccentricity runs, each ring was 
presented for 2 s at a given location centered at the fixation before being replaced by a ring at 
an adjacent non-overlapping location either outward or inward from the fixation. In expanding 
runs, the ring moved outward with the outermost ring followed by the innermost ring at the end 
of the cycle and in the contracting runs, it moved inwards from the outermost location. Each run 
started with 16 s of fixation followed by wedge or ring stimuli presented for one cycle (360° 
rotation of wedges, innermost to outermost location of rings) followed by another 16 s of 
fixation.	  
S.1.3.2.  fMRI protocol. Subjects were scanned in a Philips Intera Achieva 3T scanner at the 
Dartmouth Brain Imaging Center. Functional scans were acquired with an echo planar imaging 
sequence (TR=2 s, TE=35 ms, flip angle=90°, 128 x 128 matrix, FOV=240 mm x 240 mm) with 
1.875 mm x 1.875 mm in-plane resolution covering early visual cortex in a slab aligned parallel 
to the calcarine sulcus (30 x 2 mm thick interleaved axial slices).  T1-weighted anatomical scans 
were acquired at the end of each session (MPRAGE, TR=9.85 s, TE=4.53 s, flip angle=8°, 256 x 
256 matrix, FOV=240 mm, 160 1 mm thick sagittal slices). The voxel resolution was 0.938 mm x 
0.938 mm x 1.0 mm.  Five subjects were scanned with an 8 channel head coil and three subjects 
were scanned with a 32 channel head coil with the identical protocol.	  
S.1.3.2. fMRI preprocessing. Each subject’s fMRI data was preprocessed using AFNI software 
(Cox, 1996; http://afni.nimh.nih.gov). Functional data were first corrected for the order of slice 
acquisition. Each volume was aligned to the last volume of the last functional run to correct for 
head motion. Any spikes in the data were removed using 3dDespike in AFNI. Data were then 
filtered to remove any linear and quadratic trends. Residual data was then spatially smoothed 
with a 4 mm full-width at half-max Gaussian filter. We averaged the voxel time series data from 
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the repeated runs of the same kind to generate one dataset for each condition (clockwise and 
counter-clockwise wedges, expanding and contracting rings). 	  
S.1.3.3. Estimation of retinotopic maps. We estimated the polar angle and eccentricity maps 
from the average datasets using 3dRetinoPhase in AFNI with DELAY method for phase 
estimation. Retinotopic maps for each subject were aligned to the functional brain template 
from the movie for that subject and resampled to 3 mm isotropic voxels in the process, and 
then to the MNI 152 brain template using the alignment parameters derived in the Raiders 
study using nearest neighbor resampling. We then generated spatial tuning maps of polar 
angle and eccentricity field maps for each subject. The polar angle tuning map has an 18 
dimensional vector at each voxel, corresponding to polar angles from 0° to 170° in steps of 10° 
(0° is the vertical meridian and 90° is the horizontal meridian), with the values for dimensions 
defining a cosine curve with 1 for that voxel’s preferred polar angle and -1 for the orthogonal 
polar angle.  We computed the values for each dimension as cosine(2*(PPA-VPA)) for each 
voxel, where PPA is the preferred polar angle for that voxel as determined by retinotopic 
mapping and VPA is the polar angle for that vector dimension.  For example, if a voxel’s 
measured preferred polar angle is 40o, the value for the dimension corresponding to 40o is 1 
and for 130o is -1. We applied a similar procedure to generate eccentricity tuning maps using 
the transformation: 1-abs(exp(PEA/360)-exp(VEA/360)), where PEA is the that voxel’s preferred 
eccentricity and VEA is the eccentricity for the vector dimension.	  
	  
S.1.4. Category-selective localizer	  
S.1.4.1. Stimuli and design.  Subjects viewed still images from 6 categories – human faces, 
human bodies without heads, small objects, houses, outdoor scenes, and scrambled images – in 
a block design. During each block, we presented 16 images from a category with 900 ms of 
image presentation and 100 ms of ISI.  Subjects performed a one-back repetition detection task 
by reporting when an image repeated in succession. There were 8 s of inter-block interval 
during which subjects performed a fixation color change detection task. Each run started with 
12 s of fixation in the beginning and consisted of 12 blocks with each category represented 
twice and 12 s of fixation at the end. Each subject participated in a total of 4 runs.	  
S.1.4.2. fMRI protocol. Subjects were scanned in a Philips Intera Achieva 3T scanner at the 
Dartmouth Brain Imaging Center. Functional scans were acquired with an echo planar imaging 
sequence (TR=2 s, TE=35 ms, flip angle=90°, 80 x 80 matrix, FOV=240 mm x 240 mm) every 2 s 
with whole brain coverage (42x3 mm thick interleaved axial slices).  T1-weighted anatomical 
scans were acquired at the end of each session (MPRAGE, TR=9.85 s, TE=4.53 s, flip angle=8°, 
256 x 256 matrix, FOV=240 mm, 160 1 mm thick sagittal slices). The voxel resolution was 0.938 
mm x 0.938 mm x 1.0 mm.   All the subjects except one were scanned using an 8 channel head 
coil and one subject with a 32 channel head coil with an identical protocol.	  
S.1.4.3. fMRI data preprocessing.  Each subject’s fMRI data was preprocessed using AFNI 
software (Cox, 1996; http://afni.nimh.nih.gov). Functional data was first corrected for the order 
of slice acquisition and head motion by aligning to the last volume of the last functional run. 
Any spikes in the data were removed using 3dDespike in AFNI. Data was then filtered to 
remove any linear and quadratic trends.	  
S.1.4.4. Mapping category-selective topographies.  We used general linear model (GLM) 
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analysis to define category-selective topographies for the following contrasts: faces (human 
faces - objects and scrambled images; Kanwisher, 2010; Grill-Spector and Weiner, 2014; Haxby 
et al. 1999, 2000), places (houses and scenes - faces and scrambled images; Epstein and 
Kanwisher, 1998), objects (small objects - scrambled images Malach et al. 1995), and bodies 
(human bodies - objects and scrambled images; Downing et al. 2001; Peelen and Downing, 
2005). The preprocessed data from the category-selectivity experiment of each subject was 
smoothed with a 6 mm full-width at half-max Gaussian filter.  These data also were rotated into 
the common model space, as derived from all of the movie data.  Individual data for every 
subject was then rotated into the anatomical voxel space of every other subject.  Thus, 
anatomical space of each subject was occupied by that subject’s data and by the data from all 
other subjects. The group data in each anatomical space was resampled into a curvature-
aligned standard cortical surface mesh (ico64 with 81,942 nodes).   For each subject, category-
selective t-statistic maps were computed for each contrast using 3dDeconvolve and 3dREMLfit 
in AFNI on on that subject’s data in his or her curvature-aligned cortical space, for the average 
of all other subjects’ data (N-1) that was projected into that subject’s cortical space via the 
common model, and for the average of all other subjects’ data (N-1) in curvature-based 
anatomically-aligned cortical space.  We calculated correlations between the t-statistic maps 
calculated from subjects’ own data and those calculated from other subjects’ data in 
anatomically-aligned cortex and hyperaligned cortex.	  
	  
S.2. Results: More on hyperalignment	  
S.1.1. Between-subject correlations of neural responses	  
We asked if hyperalignment increased between-subject correspondence of univariate measures 
of local neural responses. We computed correlations of time-series between each subject and 
the mean of other subjects in each voxel or feature before and after hyperalignment in each 
movie half.  Features of hyperaligned model dimensions are illustrated by mapping between-
subject correlations of model dimensions into the anatomy of one subject.  Hyperalignment 
increased the between-subject correlation of single feature tuning profiles in occipital, 
temporal, parietal, and lateral prefrontal cortices. Hyperalignment increased mean correlation 
across subjects across all cortical features from 0.169 to 0.322 (95% CI of bootstrapped 
difference: [0.135, 0.165]).  As in all validation tests on movie data, the common model space 
and transformation matrices were derived from one half of the movie data and then applied to 
the other half for cross-validated tests, in this case between-subject correlations of time series.  	  
	  



Common model of human cortex – Supplementary material Guntupalli et al. 	  
	  

5 

	  
Supplementary Figure S1. Between-subject correlation of neural response profiles.  Univariate voxel-by-
voxel correlation of response profiles across subjects while they watched the movie after whole cortex 
hyperalignment (top), as compared to after anatomical alignment (middle) and anatomical alignment 
with control for the effect of filtering (bottom).	  

	  
In addition, we controlled for the effect of resampling data into a new space using high-

dimensional rotations. Hyperalignment resamples data into common model dimensions using 
high-dimensional rotations, which involves calculating the time-series for each model dimension 
as a weighted sum of voxels.  To achieve a similar level of resampling in anatomically-aligned 
data, we hyperaligned each subject’s data into a common model space derived with different 
reference subjects, unlike the case of hyperalignment in which all subjects are hyperaligned to a 
common model space with the same reference subject.  The inter-subject correlations of time-
series after this control for the effect of filtering are increased, relative to those for standard 
anatomical alignment, but still far lower than inter-subject correlations of time-series for 
common model dimensions (Supplementary Figure S1).	  
	  
S.1.2. Topographic basis functions for model dimensions	  
	  
For illustration, we projected three arbitrary dimensions in the common model derived from the 
full movie data onto cortical surfaces of two subjects. Transformation matrix vectors for 
dimensions (matrix columns) are projected back into the cortical anatomical space of two 
subjects to show their topographies. The searchlight hyperalignment algorithm constrains the 
topography for a given dimension to voxels in searchlights that contain the location of that 
dimension in the reference brain.  Patterns of response are modeled as weighted sums of 
overlapping topographic basis functions. Topographic basis functions for each dimension are 
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distinctive for each individual and associated with response profiles that are common across 
subjects. 	  

	  
Supplementary Figure S2. Topographic basis functions for three overlapping common model 
dimensions in the superior temporal sulcus of two subjects.  	  

 
S.2. More on bsMVPC	  
S.2.1. Regions of interest (ROI) analyses	  
To illustrate the general validity of the qualities of the common model of representational 
spaces in human cortex, in particular its applicability in different information domains and the 
extent to which it captures fine-grained topographies, we analyzed the properties of the model 
in a variety of functionally-defined cortical loci.  We selected twenty loci using Neurosynth, a 
database derived from meta-analysis of over 10,000 fMRI studies (neurosynth.org; Yarkoni et al. 
2011).  We took the coordinates for the peak location associated with selected terms (Table S1) 
and analyzed the properties of the model representational spaces that surrounded these loci in 
searchlights with a 3-voxel radius (mean volume = 119 voxels; Figures 2, 3, 4, 5; Supplemental 
Figure S11).	  
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Supplementary Table S1.  Selected cortical loci from Neurosynth.  V1 – primary visual cortex, 
MT – middle temporal visual motion area, FFA – fusiform face area, PPA – parahippocampal 
place area.	  

                                                                     	  
Search Hemi-     MNI coordinates	  
term sphere x y z 	  
V1 left -4  -82  -4	  
 right 10  -94  2	  
MT left -42  -72  2	  
 right 44  -66  2	  
Visual word  left -46  -60  -14	  
  form area	  
FFA left -42  -52  -20	  
 right 40  -50  -22	  
Scenes  left -26 -46 -10	  
  (PPA) right 34 -38 -12	  
Primary  left -44  -30  10 	  
  auditory (A1) right 52  -14  4	  
Voice  left -60  -14  0	  
 right 60  -4  -12	  
Music left -52  -14  0	  
 right 60  -20  4	  
Calculations left -30  -66  38	  
 right 34  -64  44	  
Broca’s area left -52  14  12	  
Working  left  -44  26  24	  
  memory right  44  42  26 	  
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S.2.2. Whole brain bsMVPC of movie time segments	  

	  
Supplemental Figure S3. Whole cortex bsMVPC of movie time-segments using different numbers of 
top singular vectors (SVs) from singular vector decomposition and different numbers of time-points to 
derive hyperalignment transformation matrices. Classification was performed on each movie half 
separately with hyperalignment transformations derived from the other half. bsMVPC accuracies are 
shown with hyperalignment transformation matrices calculated from all data in each movie half (~1330 
time-points) and from the initial 250, 500, 750, and 1000 time-points in each movie half.  Consistent with 
our previous analysis of ventral temporal cortex (Haxby et al. 2011), 250 time-points (10:25 min) were 
sufficient to derive hyperalignment parameters to afford bsMVPC accuracies that exceeded bsMVPC of 
anatomically-aligned data with higher dimensionality and bsMVPC accuracies increase further with each 
increment in the size of the movie data set.  These results suggest that approximately 30 min of movie 
data are sufficient for deriving a common model that affords whole brain bsMVPC accuracies that 
greatly exceed bsMVPC of anatomically aligned data (90.4% vs 74.8%) and approach, but do not match, 
accuracies achieved with a common model based on 55 min of movie data (93.0%).	  

	  
S.2.3. bsMVPC of shorter movie time segments.	  

	  
Supplementary Figure S4.  Searchlight bsMVPC accuracies for 2.5 s (1 time-point), 5 s (2 time-points), 
7.5 s (3 time-points), and 10 s (4 time-points) movie segments after anatomical alignment and after 
hyperalignment.	  
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S.2.4.  Effect of filtering on bsMVPC of movie time segments.  	  
	  

	  
Supplementary Figure S5.  Effect of filtering on bsMVPC of anatomically aligned data.  Anatomically-
aligned data were resampled using high-dimensional rotation as in Supplementary Figure S1 to control 
for the effect of filtering on bsMVPC accuracies.  Note that filtering anatomically-aligned data results in 
a small improvement in accuracies for bsMVPC of movie time segments that are, nonetheless, far lower 
than for bsMVPC of data in common model space.  The top and bottom panels, showing accuracies of 
bsMVPC of anatomically-aligned and hyperaligned data, are the same as in Figure 2a and are shown for 
comparison with bsMVPC of anatomically-aligned data that has been resampled with high-dimensional 
rotations into the anatomical spaces of other subjects (middle panel).	  

	  
S.3. More on representational geometry	  
S.3.1. Effect of hyperalignment on representational geometry 	  
S.3.1.1. Stability of within-subject representational similarities.  Our results showed that the 
between-subject correlation of neural representational geometries during movie viewing 
increased after hyperalignment. In order to test whether this increase is at the cost of losing 
individual-specific similarity structures, we computed the correlations of similarity structures 
within each subject during the test half of the movie in each 3-voxel radius searchlight before 
and after hyperalignment. Supplemental Figure S6a shows the average of this correlation across 
both movie halves and across subjects at each cortical location. Across the whole cortex, 
representational geometry before and after hyperalignment is highly correlated (r>0.4), which is 
higher than the correlation between-subjects. It is clear from these results that the 
representational similarities are well preserved after hyperalignment at the individual subject 
level.	  
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Supplementary Figure S6. Effect of hyperalignment on representational similarity.  (a) Within-subject 
similarity of similarity structures before and after hyperalignment.  (b) Between-subject representational 
similarity of animal species before and after hyperalignment.	  
	  
S.3.1.2. Between-subject representational similarities of animal species.  Between-subject 
representational similarity analysis was performed on data from the animal species perception 
study using searchlights of 3 voxel radius. In each searchlight, each subject’s neural similarity 
structure was correlated with the average of other subjects’ neural similarity structures in that 
searchlight. This was performed on data aligned based on anatomy and the data in common 
model derived from the movie data. Supplemental Figure S6b shows the results mapped onto 
flattened cortex. ISCs are higher after movie-based hyperalignment than after anatomical 
alignment, indicating better alignment of searchlight-by-searchlight variation in 
representational geometry for this restricted stimulus domain.	  
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S.4. More on spatial resolution of model space	  
S.4.1. Full brain maps of the effect of smoothing	  

	  
	  

Supplementary Figure S7.  Brain maps of bsMVPC of movie time segments after different levels of 
spatial smoothing were applied to data before hyperalignment.	  

	  
S.5. More on modeling topographies	  
S.5.1.  Projecting maps of category selectivity in ventral temporal and lateral occipital cortices 
from the common model into individual cortical topographies	  
Category-selective regions, such as the fusiform face area (FFA; Kanwisher et al. 1997; 
Kanwisher, 2010), the parahippocampal place area (PPA, Epstein and Kanwisher, 1998), occipital 
face area (OFA; Kanwisher et al. 1997; Kanwisher, 2010; Haxby et al. 1999, 2000), the lateral 
occipital complex (LOC; Malach et al. 1995), extrastriate body area (EBA; Downing et al. 2001), 
and fusiform body area (FBA; Peelen and Downing, 2005), capture elements of the coarse scale 
organization of object coding in the human brain. Each of these category-selective regions is 
defined by a contrast and is, therefore, a single dimension in the representational space. 
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Similarity of category-selectivity as measured by subjects’ own localizer data and as estimated 
by other subjects’ localizer data was computed by correlating (Pearson’s r) those t-statistic maps 
for each category within a ventral visual pathway surface ROI that included VT and lateral 
occipital cortex. 	  
	  

	  
Supplementary Figure S8.  Estimation of category-selectivity in the ventral visual cortex using common 
model.  Category-selectivity was computed for faces, places, objects, and bodies using a localizer 
experiment. (a) Mean spatial correlations of category-selectivity maps in the ventral visual stream 
estimated from corresponding maps of others’ after surface alignment using curvature (blue) and after 
whole cortex hyperalignment (red). (b) Mean spatial correlations of category-selectivity maps estimated 
from corresponding maps of others after surface alignment using curvature (blue), after whole cortex 
hyperalignment (red), and within odd and even runs of localizer experiment (green).	  

	  
Reliability of the measured category-selectivity was also estimated in each subject by 

computing the correlation as described above between the t-statistic maps computed from odd 
and even runs. Correlations were also computed between the t-statistic maps estimated from 
other subjects’ data and the t-statistic maps as measured by the odd and the even runs in each 
subject. These two correlations with odd and even run estimated were averaged after Fisher 
transformation and subjected to a bootstrapped test across all subjects for each category-
selectivity contrasting correlations for anatomically aligned and hyperaligned data (Figure S8b)	  
Maps based on subjects’ own data correlated significantly higher with maps based on other 
subjects’ data projected from common model space than with maps based on other subjects’ 
surface curvature-aligned data (mean correlations for face-selectivity = 0.81 and 0.73, 
respectively, 95% CI of difference: [0.06, 0.1]; place-selectivity = 0.77 and 0.66, respectively, 95% 
CI of difference: [0.06, 0.15]; object-selectivity = 0.71 and 0.59, respectively, 95% CI of 
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difference: [0.08, 0.15]; body-selectivity = 0.76 and 0.68. respectively, 95% CI of difference: [0.06, 
0.1];) (Figure S8a). Correlations of face-, place-, object-, and body-selectivity t-statistic maps 
between odd-even runs (faces: 0.77; places: 0.81; objects: 0.64; bodies: 0.74) were not 
significantly different from the same correlations between common model estimated and 
measured maps (95% CI of difference contained 0) except for places (95% CI of difference: [0.04, 
0.11]), but were significantly different from the correlations between anatomically-aligned data 
estimations and the measured maps (except for faces, 95% CI of difference: [-0.02, 0.12]) (Figure 
S8b). These results suggest that the whole brain hyperalignment derived from the movie data 
captures topographies associated with the category-selectivity in the ventral visual pathway and 
can predict individual variations in those topographies.	  
	  
S.5.2. Projection of polar angle maps into other subjects’ brains	  

	  

	  
	  
Supplementary Figure S9. Polar angle maps of individual subjects as measured from the fMRI data, as 
estimated from other subjects’ retinotopy data in the common model space, and as estimated using 
anatomical alignment. Polar angle maps estimated using common model space are clearly more similar 
to the measured maps than are the maps estimated using anatomical alignment.	  

	  
S.6. Comparison with functional alignment	  
Previously, we developed algorithms for functional alignment of cortices across subjects that 
used a rubber-sheet warping of the cortical manifold, similar to that used in FreeSurfer (Fischl et 
al. 1999) that preserves the topological contiguity of cortical nodes and was based on synchrony 
of responses (functional time-series alignment, FTSA; Sabuncu et al. 2010) or similarity of 
functional connectivity vectors (functional connectivity alignment, FCA; Conroy et al. 2009, 
2013).  We showed that these functional alignment algorithms improve bsMVPC of neural 
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responses in ventral temporal cortex to various categories of faces and objects but with 
accuracies that fall far short of those for wsMVPC (Conroy et al. 2013).  We extend these 
comparisons here to a searchlight analysis of bsMVPC of movie time-segments after cortical-
curvature anatomical alignment, FTSA, FCA, and hyperalignment (Supplemental Figure S10).	  

	  
Supplementary Figure S10.  Comparison of bsMVPC after FTSA and FCA – algorithms that use rubber-
sheet warping of cortex that preserves topologyS15-S17 – with bsMVPC after anatomical and 
hyperalignment.  Because FTSA and FCA use data that have been resampled into cortical nodes, the 
anatomical and hyperaligned data also were resampled into cortical nodes before bsMVPC for a valid 
comparison.  Consequently, the maps for anatomical and hyperaligned data differ slightly from those in 
Figure 2 but are qualitatively similar.  (a) Maps of bsMVPC accuracies.  (b) bsMVPC accuracies for ROI 
searchlights (same as in other figures and detailed in Supplemental Table S1).	  

	  
FTSA and FCA operate on data resampled into cortical nodes in cortical surfaces that 

were anatomically-aligned based on cortical curvature (Fischl et al. 1999) with a high-resolution 
mesh with 36,002 nodes per hemisphere.  Note that we used a denser mesh for these analyses 
so that they were compatible with the software for FTSA and FCA, as compared to the 20,484 
node mesh that we used elsewhere in this report for other cortical-surface based analyses.  
FTSA and FCA were performed using the methods described in Sabuncu et al. (2010) and 
Conroy et al. (2009, 2013).  Searchlights for bsMVPC had an 18 mm radius to match the volume 
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of the 3 voxel radius searchlights used in the main analysis (Figure 2).  Results (Supplemental 
Figure S10) are consistent with our previous bsMVPC analysis in VT cortex (Conroy et al. 2013), 
showing that bsMVPC accuracies are higher after FTSA and FCA, as compared to after 
anatomical alignment, but far lower than after hyperalignment.	  
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